Home Search Collections Journals About Contact us My IOPscience

Energy levels and crystal field parameters of Nd^{3+} and Er^{3+} in $LiRP_4O_{12}$ single crystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1992 J. Phys.: Condens. Matter 4 3453 (http://iopscience.iop.org/0953-8984/4/13/009)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.96 The article was downloaded on 11/05/2010 at 00:09

Please note that terms and conditions apply.

Energy levels and crystal field parameters of Nd³⁺ and Er³⁺ in LiRP₄O₁₂ single crystals

Z Mazurak† and J B Gruber‡

† Department of Solid State Physics, Polish Academy of Sciences, ul Kawalca 3, PL-41-800 Zabrze, Poland
‡ Physics Department, San Jose State University, San Jose, CA 95192-0106, USA

Received 10 December 1991

Abstract. The experimental Stark energy levels for the Nd³⁺ and Er³⁺ in LiRP₄O₁₂ crystals were presented in our previous paper [13]. A crystal field analysis of these data is based on a Hamiltonian of C₂ point group symmetry, including *J*-mixing effects. We find that the twinned C_{2/C} (C₂) structure is consistent with all available experimental results. A Hamiltonian parametrized in monoclinic symmetry was used to describe the observed crystal-field splittings of Nd³⁺ and Er³⁺ in LiRP₄O₁₂. Resulting RMs deviations between calculated and experimental levels range from 6.8 to 7.4 cm⁻¹.

1. Introduction

Luminescence and laser properties of the stoichiometric neodymium compounds $LiNdP_4O_{12}$ and $KNdP_4O_{12}$, which show exceptionally low concentration quenching of neodymium luminescence, are well documented in numerous papers [1–5]. Considerably less progress has been achieved in the spectroscopy of the other rare-earth ions in stoichiometric rare-earth compounds. However, works on the spectroscopic behaviour of $LiLa_{1-x}Pr_xP_4O_{12}$ [6–8], or $LiGd_{1-x}Er_xP_4O_{12}$ [9, 10] have recently been published. In our paper, we present some data and analysis concerning the optical spectra of Nd³⁺ and Er^{3+} in lithium tetraphosphate single crystals. Our interest is focused at the calculation of the Stark energy levels and crystal field parameters (CFP) for the $f^n(f^{14-n})$ configuration.

2. Experimental details

2.1. Absorption spectra

The low-temperature absorption spectra of Nd^{3+} and Er^{2+} were recorded on a Cary-17 spectrophotometer equipped with a liquid helium cryostat operating between 4.2 and 10 K. The absorption measurements reported for both Nd^{3+} and Er^{3+} in LiRP₄O₁₂ were carried out by SMaia-Melo at the Laboratory of Transition Elements of CNRS (Meudon-Bellevue, France).

3. Analysis of experimental data

We determined the Stark energy levels of Nd^{3+} , Er^{3+} in $LiRP_4O_{12}$ from the low-temperature absorption and luminescence spectra which were presented in our previous works [6–10, 13].

3.1. Crystal field parameters for the rare earth tetraphosphates

The point group symmetry of the eare-earth tetraphosphate is $C_{2/C}[7, 10]$. In our crystal-field analysis, we assume a crystal-field Hamiltonian of C_2 symmetry, which we take in the irreducible tensor form:

$$H_x = \sum_{km} B_{km}^{\dagger} \sum_i C_{km}(\hat{r}_i)$$
⁽¹⁾

where the B_{km}^{\dagger} are crystal-field parameters ($\dagger = \text{complex conjugate}$) satisfying:

$$B_{km}^{\dagger} = (-1)^m B_{k,-m} \tag{2}$$

and where C_{km} are spherical tensors, related to ordinary spherical harmonics $Y(\theta_i, \varphi_i)$ by:

$$C_{km}(r_i) = [4\pi/(2k+1)]^{1/2} Y_{km}(\theta_i, \varphi_i)$$
(3)

where θ_i and φ_i are polar coordinates of the *i*th electron. In (1), the sums for k and m run over k = 2, 4, 6 and $m = 0, \pm 2 \dots \pm k$, as is appropriate for the C₂ symmetry (with the C₂ axis chosen as the quantization axis), and the sum for *i* runs over the electrons in the 4fⁿ configuration. In general the B_{km} are complex, except for B_{k0} which are real. In addition, we assume that the coordinate system has been rotated about the C₂ axis so that B_{22} is real. The resulting Hamiltonian given by (1), together with the added restrictions, results in 14 independent parameters.

The crystal-field Hamiltonian is diagonalized together with an effective free-ion Hamiltonian of the form:

$$H_{\text{free}} = \sum_{[S,L]J} \Delta_{[S,L]J} | [S,L]J\rangle \langle [S,L]J |$$
(4)

where the sum for [S, L]J, in general, runs over several of the lowest states of the 4fⁿ configuration. The quantities $\Delta_{[S,L]J}$ are centroid parameters, which would be equal to the experimental centres of gravity of the crystal-field split levels if effects of J mixing by the crystal field were neglected. By diagonalizing the sum of equations (1) and (4), we include the major effect of J mixing. We include the lowest ten [S, L]J states in our calculations for Nd³⁺ and Er³⁺.

Matrix elements of the crystal-field Hamiltonian are obtained from wavefunctions associated with the intermediate-coupling diagonalization of a free-ion Hamiltonian consisting of Coulomb, spin-orbit and configuration interactions. Parameter values for this free-ion Hamiltonian are those appropriate for rare-earth ions in aqueous solutions [11]. The procedure used in calculations has been described previously by Morrison *et al* [12].

LiNdP ₄ O ₁₂ and LiErP ₄ O ₁₂ . Assume space group $C_{2/C}$; $m = 0, \pm 2, \ldots, k$ results in 14 independent B_{km} parameters	B ₄₄ B ₆₂ B ₆₄ energy	ag. real imag. B ₄₀ real imag. real imag. real imag. (cm ⁻¹)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C _{2/C} ; m =		imag.	-290 180
ameters B_{km} in cm $^{-1}$ for LiNdP4O12 and LiErP4O12. Assume space group (B ₆₂	real	-250 . -388
		B_{60}	248 140
	 _	imag.	60
	B4	real	-528 100
	5	imag.	160
	B	real	-628
		\mathbf{B}_{40}	-170
-field par		\mathbf{B}_{22}	103
 Crystal- ymmetry. 		\mathbf{B}_{20}	-560
Table of C ₂ s			PZ

Table I. Crystal-field parameters B_{km} in cm ⁻¹ for LiNdP ₄ O ₁₂ and LiErP ₄ O ₁₂ . Assume space group C _{2/C} ; $m = 0, \pm 2, \dots, k$ results in 1 of C_sommetry

3456 Z Mazurak and J B Gruber

Table 2. Calculated and experimental energy levels for Nd^{3+} in LiNdP₄O₁₂. Total of 29 experimental levels; RMS deviation = 7.4 cm⁻¹.

State [S, L]J		Energy		Sec. 4		Energy		01.11		Energy	
	Label	Calc.	Exp.	[S, L]J	Labei	Calc.	Exp.	State $[S, L]J$	Label	Caic.	Exp.
4I.9/2	Z	0	0	⁴ F _{9/2}	Q	14708	14708	⁴ F _{7/2}	T	13370	13358
	Z_2	95	106		Q_2	14765	14771	1	\mathbf{T}_{2}	13476	13470
	Ζ,	204	197		Q3	14867	14863	${}^{4}S_{3/2}$	Т,	13494	13495
	Z,	267	263		Q4	14891	14899		T ₄	13579	13582
	Z,	338	320		Qs	14903	14910		Τ,	13590	13600
									T ₆	13593	
4 I 11/2	Y,	1935	1940								
	Y,	1948									
	Y.	2007	1998								
	Y	2059	2050								
	Y,	2076	2075								
	Y,	2137	2132					••			
⁴ F _{3/2}	R,	11470	11479								
	\mathbf{R}_2	11590	11585								
⁴ F _{5/2}	S,	12390	12390								
1	S ₂	12454	12445								
² H _{9/2}	S,	12516	12500								
	S₄	12578	12573								
	S,	12603	12600								
	S.	12678	12687								
	S7	12754	12762								
	S ₈	12756			-				-		

The first step in our analysis of lanthanide ions in tetraphosphate crystals was to obtain starting values for B_{km} by means of point-charge lattice sums A_{km} . These are related to the B_{km} by:

 $B_{km} = \rho_k A_{km} \tag{5}$

where

$$\rho_k = \tau^{-k} \langle r^k \rangle_{\rm HF} (1 - \sigma_k) \tag{6}$$

and where τ is a host-independent, ion-dependent radial expansion parameter, $\langle r^k \rangle_{HF}$ are Hartree-Fock expansion values and σ^k are shielding factors.

Crystal-field parameters for Nd³⁺ and Er³⁺ were determined by starting with B_{km} given by (5) and varying the B_{km} and the $\Delta_{[S,L]J}$ simultaneously until a minimum RMS deviation between calculated and experimental energy levels was found. The best-fit B_{km} are presented in table 1, together with the corresponding RMS deviations.

Values of the RMS deviations in table 1, ranging from 6.8 cm^{-1} for Er^{3+} to 7.4 cm⁻¹ (for Nd³⁺), are somewhat larger than values obtained for the same ions in LaF₃ [14] (LaF₃ also has R³⁺ ions in C₂ symmetry). The reason for this is as follows. Consider the strength parameter, which is a quantitative measure of the strength of the crystal-field interaction of the particular rare-earth ion with a particular host crystal. As an illustration, for Nd³⁺ in LiRP₄O₁₂, from values of table 1, we obtain $S = 548 \text{ cm}^{-1}$. The

State [S, L]J		Energy		G 4		Energy		C 4+4+		Energy	
	Label	Calc.	Exp.	State $[S, L]J$	Label	Calc.	Exp.	State $[S, L]J$	Label	Cale.	Exp.
4 I _{15/2}	Z,	0	0	² H _{11/2}	F,	19145	19140	⁴ F _{9/2}	D,	15244	15243
	Z_2	31	36		\mathbf{F}_2	19164	19156	., =	D_2	15300	15295
	$\overline{Z_3}$	112	130		$\overline{F_3}$	19168	19171		D_3	15317	15318
	Z4	164	170		F4	19199	19204		D_4	15362	15372
	Ζ,	219	215		F ₅	19223	19215		D_{s}	15383	
	Z.	250	245		F.	19250	19252		-		
	\mathbf{Z}_7	282	280		•			${}^{4}S_{3/2}$	E1	18414	18422
	Z_8	326		${}^{4}\mathbf{F}_{q/2}$	G,	20450	20450	.,.	Ε,	18473	18467
				-/2	G,	20498	20483		-		
4I.1/2	Y,	6545	6550		G,	20533	20533				
	\dot{Y}_2	6581	6581		G₄	20599	20579				
	$\bar{\mathbf{Y}_3}$	6630	6629								
	Y₄	6646	6644								
	Y ₅	6694	6676								
	Y ₆	6707									
	\mathbf{Y}_7	6721	6717								
⁴ J _{(1/2}	$\mathbf{A}_{\mathbf{f}}$	10211	10211								
		10238	10230								
		10262	10256								
		10286	10288								
		10294									
		10311	10315								

Table 3. Calculated and experimental energy levels of Er^{3+} in LiErP₄O₁₂. Total of 35 experimental levels; RMS deviation = 6.8 cm^{-1} .

corresponding strength parameter for Nd^{3+} in LaF₃ is 378 cm⁻¹ [14]. The crystal field is stronger in LiRP₄O₁₂ than in LaF₃.

Detailed comparisons of the calculated and experimental energy levels are given in tables 2 and 3. In these tables, states are identified by the maximum component in the free-ion wavefunctions. The theoretical energy levels are calculated by means of the crystal-field parameters of table 1.

The analysis of the Nd³⁺ spectrum (table 2) is straightforward. Our calculation spans 32 sublevels, and of these only 3 are not identified experimentally. In the case of Er^{3+} (table 3), we fit the lowest 35 levels: the largest deviation between theory and experiment for the individual crystal-field split level is 20 cm⁻¹ (for the level at 20 579 cm⁻¹ in the ⁴F_{9/2} state).

4. Conclusions

We have furthered our investigation of optical properties of rare-earth ions in LiRP₄O₁₂ by considering the crystal-field parameters and calculated energy levels. We used a crystal-field Hamiltonian in the monoclinic site symmetry for our crystal-field analysis and obtained RMS deviation of 6.8–7.4 cm⁻¹. Better fits for all values of B_{km} allowed by symmetry are obtained for Er.

Acknowledgment

The Polish Academy of Sciences, CPBP 01.12 Program, has financially supported this work.

References

- [1] Yamada T, Otsuka K and Nakano J 1974 J. Appl. Phys. 45 5096
- [2] Strek W, Szafrański C and Jeżowska-Trzebiatowska B 1981 Acta Phys. Pol. A 60 477
- [3] Mazurak Z, Jeźowska-Trzebiatowska B, Schultze D and Waligora Ch 1984 Cryst. Res. and Technol. 197
- [4] Gueugnon C and Budin J P 1980 IEEE J. Quantum Electron. QE-1694
- [5] Malinowski M and Woliński W 1984 J. Lumin. 29 275
- [6] Malinowski M and Woliński W 1984 Acta Phys. Pol. A 65 303
- [7] Mazurak Z, Łukowiak E, Jeźowska-Trzebiatowska B, Schultze D and Waligora Ch 1984 J. Phys. Chem. Solids 45 487
- [8] Mazurak Z, Łukowiak E, Ciunik Z, Jeżowska-Trzebiatowska B, Schultze D and Waligora Ch 1984 J. Molec. Struct. 115 31
- [9] Mazurak Z and Jeźowska-Trzebiatowska B 1981 Acta Phys. Pol. A 60 799
- [10] Mazurak Z, Hanuza J, Hermanowicz K, Jeźowska-Trzebiatowska B, Schultze D and Waligora Ch 1983 Chem. Phys. 79 255
- [11] Carnall W T, Fields P R and Rajnak K 1968 J. Chem. Phys. 49 4412, 4424, 4443, 4447, 4450
- [12] Morrison C A, Leavitt R P and Wortman D E 1980 J. Chem. Phys. 73 2580
- [13] Mazurak Z G, Jeźowska-Trzebiatowska B and Maia-Melo S 1986 J. Molec. Struct. 143 195
- [14] Morrison C A and Leavitt R P 1979 J. Chem. Phys. 71 2366